Search results for "ultraviolet cameras"

showing 2 items of 2 documents

Ultraviolet imaging of volcanic plumes: A new paradigm in volcanology

2017

Ultraviolet imaging has been applied in volcanology over the last ten years or so. This provides considerably higher temporal and spatial resolution volcanic gas emission rate data than available previously, enabling the volcanology community to investigate a range of far faster plume degassing processes than achievable hitherto. To date, this has covered rapid oscillations in passive degassing through conduits and lava lakes, as well as puffing and explosions, facilitating exciting connections to be made for the first time between previously rather separate sub-disciplines of volcanology. Firstly, there has been corroboration between geophysical and degassing datasets at ≈1 Hz, expeditin…

volcanic plumes010504 meteorology & atmospheric sciencesLavaEarth scienceFlow (psychology)010502 geochemistry & geophysicsmedicine.disease_cause01 natural sciencesVolcanic plumeInterdisciplinary volcanology; Ultraviolet cameras; Volcanic plumes; Earth and Planetary Sciences (all)medicineinterdisciplinary volcanology0105 earth and related environmental sciencesgeographygeography.geographical_feature_categoryultraviolet cameraslcsh:QE1-996.5Gas releaseVolcanologyGeophysicsPlumelcsh:GeologyDynamic modelsVolcano13. Climate actionGeneral Earth and Planetary SciencesEarth and Planetary Sciences (all)GeologyUltravioletUltraviolet camera
researchProduct

Ultraviolet camera measurements of passive and explosive (Strombolian) sulphur dioxide emissions at Yasur volcano, Vanuatu

2020

Here, we present the first ultraviolet (UV) camera measurements of sulphur dioxide (SO2) flux from Yasur volcano, Vanuatu, for the period 6–9 July 2018. These data yield the first direct gas-measurement-derived calculations of explosion gas masses at Yasur. Yasur typically exhibits persistent passive gas release interspersed with frequent Strombolian explosions. We used compact forms of the “PiCam” Raspberry Pi UV camera system [1,2] powered through solar panels to collect images. Our daily median SO2 fluxes ranged from 4 to 5.1 kg s−1, with a measurement uncertainty of −12.2% to +14.7%, including errors from the gas cell calibration drift, uncertainties in plume direction and distance, and…

geographygeography.geographical_feature_category010504 meteorology & atmospheric sciencesExplosive materialultraviolet camerassub-05010502 geochemistry & geophysicsAtmospheric sciences01 natural sciencesRemote sensing Strombolian explosions Sulphur dioxide Ultraviolet camerasStrombolian eruptionPlumeStrombolian explosionsremote sensingFlux (metallurgy)VolcanoParticle image velocimetryCalibrationsulphur dioxideGeneral Earth and Planetary SciencesEnvironmental scienceMeasurement uncertaintylcsh:Qlcsh:Science0105 earth and related environmental sciences
researchProduct